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Abstract
The bound-state problem for triaxial ellipsoidal infinite-barrier quantum dots
has been solved. It is exactly solvable in terms of ellipsoidal coordinates and
the eigenmodes are written in terms of Lamé wavefunctions. The need for all
eight types of functions is shown. This presents a generalization over previous
work on spheres and spheroids. Splitting of degeneracy and level crossing are
obtained.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Semiconductor quantum dots (QDs) are excellent model systems of quantum mechanics since
they can be grown in a variety of shapes and sizes [1–3], including as QD molecules [4]. In
particular, a very good mathematical model of the electron states in many of the structures
(the materials must have large bandgap materials and sizes of at least tens of ångströms) is a
one-band Schrödinger equation with an effective mass replacing the free-electron mass and an
infinite potential barrier outside the dot (for colloidal QDs). Such a model study is extremely
useful since it is often exactly solvable, thereby providing a physical insight into the problem
and a limiting case that more complicated models must reduce to. As one example, such a
model allowed the discovery of a critical radius for modulated nanowires [5], a result later
confirmed in a multiband calculation. Furthermore, similar mathematical equations arise in
other areas of physics such as electromagnetism and acoustics.

A wide variety of shapes have been made and theoretically studied over the years.
Examples are rectangular boxes [3, 6, 7], discs or cylinders [8], spheres [9], cones [10],
spheroids [11, 12], parabolic lenses [13, 14] and parabolic cylinders [15]. Of these, the spherical
shape is probably the most popular since simple chemical growth techniques (e.g. colloidal
growth) produce spherical nanocrystals. It is obvious that realistic QDs might not be perfect
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spheres and this has led to the theoretical study of spheroidal QDs. However, previous works
have often referred to these QDs as ellipsoids (e.g. [12]); strictly speaking, they are only
ellipsoids of revolution. Nevertheless, it is known that the triaxial ellipsoid problem can also
be solved exactly [16] in the sense that the partial differential equation can be separated in terms
of ellipsoidal coordinates (EC). Mathematically, the problem is one of solving Helmholtz’s
equation with Dirichlet boundary conditions and this problem is known to be separable in
11 coordinate systems [16]. What makes the solution in EC even more important (apart
from the fact that it does not appear to have been solved yet) is the fact that the other ten
coordinate systems can be considered as degenerate forms of the former. In this paper, we solve
Schrödinger’s equation in ellipsoidal coordinates and compute the bound states for ellipsoidal
QDs.

2. Schrödinger’s equation in ellipsoidal coordinates

The ellipsoidal coordinates ξ1, ξ2, ξ3 are defined in terms of the Cartesian ones as follows [16–
18]:

x = (ξ2
1 − a2)1/2(ξ2

2 − a2)1/2(ξ2
3 − a2)1/2

a(a2 − b2)1/2
,

y = (ξ2
1 − b2)1/2(ξ2

2 − b2)1/2(ξ2
3 − b2)1/2

b(b2 − a2)1/2
,

z = ξ1ξ2ξ3

ab
,

(1)

with

ξ1 > a > ξ2 > b > ξ3 > 0. (2)

One set of ξ1, ξ2, ξ3 corresponds to eight Cartesian points. The constant coordinate surfaces
are ellipsoids (constant ξ1), confocal hyperboloids of one sheet (constant ξ2) and confocal
hyperboloids of two sheets (constant ξ3).

Schrödinger’s equation inside an ellipsoid can be written as

∇2� + k2� = 0, (3)

where k2 = 2m∗E/h̄2, E is the energy and m∗ is the effective mass. The problem is separable
in EC. Writing

� = X1(ξ1)X2(ξ2)X3(ξ3), (4)

we have√
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3 )

1
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dξ1

[√
(ξ2
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dξ1

]
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√
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2 )(ξ2

2 − b2)(ξ2
1 − ξ2

3 )
1

X2

d

dξ2

[√
(a2 − ξ2

2 )(ξ2
2 − b2)

dX2

dξ2

]

+
√

(a2 − ξ2
3 )(b2 − ξ2

3 )(ξ2
1 − ξ2

2 )
1

X3

d

dξ3

[√
(a2 − ξ2

3 )(b2 − ξ2
3 )

dX3

dξ3

]

+ k2(ξ2
1 − ξ2

2 )(ξ2
2 − ξ2

3 )(ξ2
1 − ξ2

3 ) = 0. (5)

The three separated ordinary differential equations have the form [17]

(ξ2
i − a2)(ξ2

i − b2)
d2 Xi

dξ2
i

+ ξi [2ξ2
i − (a2 + b2)]

dXi

dξi
+ [k2ξ4

i − α2ξ
2
i + κ]Xi = 0, (6)
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where α2 and κ are the two separation constants. The latter is known as the ellipsoidal or Lamé
wave equation. It is believed to be one of the most complicated second-order linear differential
equations encountered in mathematical physics [19] and solving it is highly nontrivial. The
equation has three regular singularities and one irregular singularity at infinity which originates
from the confluence of two regular singularities,an integral solution does not appear to exist and
a series solution leads to a five-term recursion relation. If we now set t = ξ2

i /b2, Xi (ξi ) = X (t),
we have

t (t − 1)(t − c)
d2 X

dt2
+

1

2
[3t2 − 2(1 + c)t + c]

dX

dt
+ (λ + µt + γ t2)X = 0, (7)

where

c = a2

b2
, λ = κ

4b2
, µ = − 1

4α2, γ = 1
4 k2b2. (8)

In this form, Arscott et al [19] provided an algorithm for finding the characteristic curves (i.e. µ
and λ versus γ ) for one of the eight types of solutions. We have extended their algorithm to
find all the eight types of solutions to the Helmholtz equation finite and smooth everywhere
within an ellipsoid with the origin at the centre and intersections ±x0, ±y0 and ±z0 with the
x , y and z axes. One starts by rewriting X in the general form [19]:

X (t) = tρ/2(t − 1)σ/2(t − c)τ/2 F(t), (9)

where ρ, σ and τ are either 0 or 1, i.e. eight different types of X are possible, and F is an
infinite series:

F(t) =
∞∑

r=0

ar (t − t0)
r , (10)

where t0 is a constant. Inserting equation (10) in (7) yields the recursion expression

N0
r ar + [N2

r+1 + N1
r+1(r + 1) + N0

r+1r(r + 1)]ar+1

+ [N2
r+2 + N1

r+2(r + 2) + N0
r+2(r + 2)(r + 1)]ar+2

+ [N1
r+3(r + 3) + N0

r+3(r + 3)(r + 2)]ar+3

+ N0
r+4(r + 3)(r + 4)ar+4 = 0, (11)

with

N0
r = γ,

N0
r+1 = 1,

N1
r+1 = 1

2 A2,

N2
r+1 = µ + µ0 + 2γ t0,

N0
r+2 = 3t0 − 1 − c,

N1
r+2 = A2t0 − A1,

N2
r+2 = λ − λ0 + (µ + µ0)t0 + γ t2

0 ,

N0
r+3 = (2t0 − 1)(t0 − c) + t2

0 − t0,

N1
r+3 = 1

2 A2t2
0 − A1t0 + 1

2 A0,

N0
r+4 = (t2

0 − t0)(t0 − c).

(12)

One convergent independent solution is found by requiring that ar = 0 ∀ r � N using a
backward–forward algorithm [20]; further details will be published elsewhere. In principle,
two independent solutions exist for each coordinate ξi . The numerical method described
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above leads to one well-behaved (finite) solution everywhere within the ellipsoid. The second
independent solution is not finite everywhere within the ellipsoid and does not represent a
physically allowable solution for our application. The solution of the Helmholtz equation
consists of three steps. First, we determine the characteristic curves; we chose t0 = 1 always.
Second, we subject the ξ1 equation to the boundary condition on the ellipsoidal surface. Third,
we form the eigenfunctions for the three-dimensional problem from the product of the three
Lamé wavefunctions of the same type; a proof of this important result can be found in, for
example, Morse and Feshbach [16]. Since the solutions are obtained as series solutions, they
are smooth and differentiable.

3. Calculations

We now apply the computed results to a physical problem that does not appear to have been
solved yet: that of the bound states of an electron in an infinite-barrier ellipsoidal quantum
dot. The basic quantities of interest in quantum mechanics are the energies and wavefunctions.
The energies are related to the eigenvalues computed via

E = h̄2k2

2m∗ = 2h̄2

m∗b2
γ, (13)

where b = (z2
0 − y2

0)
1/2 and m∗ is the effective electron mass. As is commonly done, we

will assume the dot to be GaAs, for which m∗ = 0.067 m0. For most of the calculations, the
semi-axes were chosen to be (x0, y0, z0) = (100, 150, 200) Å.

We found all the energies to be nondegenerate. One can compare to the corresponding
results for a spherical and a spheroidal dot [11, 12]. For the spherical dot, one can label the
solutions by (n, l, m), where (n − 1) is the number of radial nodes, l arises from the spherical
symmetry and m labels the (2l + 1) degenerate solutions. The lowest states are known to be, in
order of increasing energy, (1, 0, 0), (1, 1, 1) = (1, 1, 1̄) = (1, 1, 0). For the spheroidal dot,
the states are, at most, two-fold degenerate solutions (±|m|). For the same interior volume, the
ground state of a prolate spheroid is higher in energy than that of the equivalent sphere [12].
The lowered symmetry of the triaxial ellipsoid is responsible for the removal of the degeneracy
in the latter case. Hence, our choice of n, m for the ellipsoid wavefunctions does not necessarily
relate to the sphere and spheroid; they are chosen to reduce to the Lamé functions in the limit
γ = 0.

In figure 1, the lowest wavefunction in one octant (x � 0, y � 0, z � 0) is shown as a
function of x, y in the z = 0 plane (left plot), x, z in the y = 0 plane (middle plot) and y, z
in the x = 0 plane (right plot), respectively. The energy is 31.25 meV (γ = 2.405) and the
indices n, m, ρ, σ, τ are all 0. This state has no nodes along the three planes and peaks at the
centre of the ellipsoid. It resembles the ground state of a spherical and a spheroidal dot [12].
For a sphere of the same volume, the ground-state energy is 27.06 meV. Thus, the ellipsoid
ground-state energy is higher, as one would expect from quantum confinement arguments.

In figure 2, similar plots are shown for the first excited state along the two planes where
it is nonvanishing. The energy is 49.27 meV (γ = 3.791) and the indices n, m, ρ, σ, τ are
0, 0, 1, 0, 0, respectively. It is therefore formed from a second type of Lamé wavefunction.
This shows the need to calculate all eight types of Lamé wavefunctions. The wavefunction is
zero in the z = 0 plane but not in the y = 0 and x = 0 planes. It peaks at x = 0, z = z0/2 and
z = 0, y = y0/2 in the y = 0 and z = 0 planes, respectively. This solution resembles the first
excited state of the sphere in having a nodal plane. However, it is found to be nondegenerate,
in contrast to the spherical and spheroidal cases (the latter for the (111) state). For example,
for the sphere, this state would be three-fold degenerate. The energy of the corresponding
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Figure 1. Lowest wavefunction for the ellipsoid with semi-axes x0 = 1 au, y0 = 1.5 au and
z0 = 2 au (au: arbitrary units). The left, middle and right plots correspond to the xy, xz and yz
planes, respectively.
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Figure 2. First excited state. The left (right) plot corresponds to the xz (yz) plane. The z = 0
plane is a nodal plane.

state for the sphere is 55.20 meV. This is actually higher than for the first excited state of the
ellipsoid. The reason is that the splitting of the degenerate states of the sphere results in states
that are below and states that are above the spherical result.

Indeed, we find that the next state (energy 58.51 meV) is equivalent to another partner of
the three (11m) states of the sphere and it vanishes in the y = 0 plane. It is at a higher energy
compared to the previous state because the wavefunction is oriented along the y direction,
which is shorter than the z direction along which the first excited state points. For the same
reason, since the semi-axis in the x direction is smaller still than in the y direction, the state
corresponding to the third partner of the three (11m) states of the sphere is even higher in
energy. It turns out that it is not the fourth state but rather the sixth (energy 83.25 meV). It
has, therefore, been pushed higher up in the spectrum, resulting in a level crossing with two
other states (energies 72.75 and 81.51 meV). This result is due to the rather large anisotropy
of the ellipsoid chosen. Indeed, our technique applies independently of the anisotropy and is,
therefore, useful when perturbation methods fail [21]. The crossing effect depends upon the
relative anisotropy of the ellipsoid and not on its absolute size; this can be proven from the
scale invariance of the Helmholtz equation [22]. It should also occur for the spheroid but was
not reported [11, 12]; it was, nevertheless, observed for an elliptical dot [23]. It is an important
phenomenon that can impact the physical properties of a quantum dot [2, 24].

Finally, we briefly present a study of the shape dependence of the lowest energy state at
constant volume (figure 3). We plot the γ parameter and the energy at constant volume for
ellipsoids with different x0, z0 but constant y0 = 1.5 au (au stands for arbitrary units but is
here chosen as 100 Å). As expected, the energy for the ellipsoid is always larger than for the
corresponding sphere.
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Figure 3. γ parameter and energy for the lowest state at constant volume for ellipsoids with
different x0, z0 but constant y0 = 1.5 au.

4. Summary

In summary, we have computed the lowest bound states of a triaxial ellipsoidal quantum dot
and compared them to spherical and spheroidal dots. Degeneracy splitting and level crossing,
dependent upon the aspect ratio of the semi-axes of the ellipsoid but not on the absolute size,
is predicted.
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